Hydrazine bisalane is a potential compound for chemical hydrogen storage. A theoretical study.
نویسندگان
چکیده
Electronic structure calculations suggest that hydrazine bisalane (AlH(3)NH(2)NH(2)AlH(3), alhyzal) is a promising compound for chemical hydrogen storage (CHS). Calculations are carried out using the coupled-cluster theory CCSD(T) with the aug-cc-pVTZ basis set. Potential energy surfaces are constructed to probe the formation of, and hydrogen release from, hydrazine bisalane which is initially formed from the reaction of hydrazine with dialane. Molecular and electronic characteristics of both gauche and trans alhyzal are determined for the first time. The gauche hydrazine bisalane is formed from starting reactants hydrazine + dialane following a movement of an AlH(3) group from AlH(3)AlH(3)NH(2)NH(2) rather than by a direct attachment of a separate AlH(3) group, generated by predissociation of dialane, to AlH(3)NH(2)NH(2). The energy barriers for dehydrogenation processes from gauche and transalhyzal are in the range of 21-28 kcal mol(-1), which are substantially smaller than those of ca. 40 kcal mol(-1) previously determined for the isovalent hydrazine bisborane (bhyzb) system. H(2) release from hydrazine bisalane is thus more favored over that from hydrazine bisborane, making the Al derivative an alternative candidate for CHS.
منابع مشابه
"Physical properties and electronic structure of LaNi5 compound before and after hydrogenation: An experimental and theoretical approach"
The present study deals with the experimental and theoretical approaches of LaNi5 hydrogen storage alloy. The structural, morphological and hydrogenation characterization of this sample which is synthesized by the arc melting technique were carried out by X-ray diffraction, scanning electron microscopy and a homemade Sievert's type apparatus, respectively. The results showed that after several ...
متن کاملLithium Hydrazinidoborane Ammoniate LiN2H3BH3·0.25NH3, a Derivative of Hydrazine Borane
Boron- and nitrogen-based materials have shown to be attractive for solid-state chemical hydrogen storage owing to gravimetric hydrogen densities higher than 10 wt% H. Herein, we report a new derivative of hydrazine borane N₂H₄BH₃, namely lithium hydrazinidoborane ammoniate LiN₂H₃BH₃·0.25NH₃. It is easily obtained in ambient conditions by ball-milling N₂H₄BH₃ and lithium amide LiNH₂ taken in eq...
متن کاملHydrazine borane: synthesis, characterization, and application prospects in chemical hydrogen storage.
Hydrazine borane (N(2)H(4)BH(3)) is the novel boron- and nitrogen-based material appearing to be a promising candidate in chemical hydrogen storage. It stores 15.4 wt% of hydrogen in hydridic and protic forms, and the challenge is to release H(2) with maximum efficiency, if possible all hydrogen stored in the material. An important step to realize this ambitious goal is to synthesize HB with hi...
متن کاملHydrazine Borane and Hydrazinidoboranes as Chemical Hydrogen Storage Materials
Hydrazine borane N2H4BH3 and alkali derivatives (i.e., lithium, sodium and potassium hydrazinidoboranes MN2H3BH3 with M = Li, Na and K) have been considered as potential chemical hydrogen storage materials. They belong to the family of boronand nitrogen-based materials and the present article aims at providing a timely review while focusing on fundamentals so that their effective potential in t...
متن کاملRegenerable hydrogen storage in lithium amidoborane.
Regenerable hydrogen storage of lithium amidoborane is firstly achieved through the routes of direct thermal dehydrogenation and subsequent chemical hydrogenation of its dehydrogenated products by treatment with hydrazine in liquid ammonia.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 40 34 شماره
صفحات -
تاریخ انتشار 2011